A Bloch–Wigner exact sequence over local rings
نویسندگان
چکیده
منابع مشابه
Orthogonal Groups over Local Rings
In an earlier paper [S] we have determined the structure of the linear groups over a local ring. In this note we continue the study of the classical groups over a local ring with the investigation of the orthogonal groups. Our main result (cf. Theorem 6 below) is a complete description of the invariant subgroups of an orthogonal group of noncompact type (i.e., of index ^ 1) over a local ring L ...
متن کاملBounds in Polynomial Rings over Artinian Local Rings
Let R be a (mixed characteristic) Artinian local ring of length l and let X be an n-tuple of variables. This paper provides bounds over the ring R[X] on the degrees of the output of several algebraic constructions in terms of l, n and the degrees of the input. For instance, if I is an ideal in R[X] generated by polynomials gi of degree at most d and if f is a polynomial of degree at most d belo...
متن کامل2 00 9 Exact Zero Divisors and Free Resolutions over Short Local Rings
Let R be a local ring with maximal ideal m such that there exists a pair of elements a, b with (0 : a) = bR and (0 : b) = aR; we say that a pair a, b as above is an exact pair of zero divisors. We study minimal free resolutions of finitely generated R-modules M , with particular attention to the case when m = 0. Let e denote the minimal number of generators of m. If R is Gorenstein with m = 0 a...
متن کاملExact annihilating-ideal graph of commutative rings
The rings considered in this article are commutative rings with identity $1neq 0$. The aim of this article is to define and study the exact annihilating-ideal graph of commutative rings. We discuss the interplay between the ring-theoretic properties of a ring and graph-theoretic properties of exact annihilating-ideal graph of the ring.
متن کاملPeriodic modules over Gorenstein local rings
It is proved that the minimal free resolution of a module M over a Gorenstein local ring R is eventually periodic if, and only if, the class of M is torsion in a certain Z[t ±1 ]-module associated to R. This module, denoted J(R), is the free Z[t ±1 ]-module on the isomorphism classes of finitely generated R-modules modulo relations reminiscent of those defining the Grothendieck group of R. The ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2017
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2017.01.002